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The scattered intensity of ensembles of right homogeneous quasi-diluted

cylinders with constant oval right section (RS) and volume fraction ’ are

analyzed using the small-angle-scattering (SAS) correlation function (CF) �(r) =

�(r, ’) in the isotropic two-phase approximation. A relation between the CF of

the cylinder RS, �0(r), and the CF of the single cylinder of height H, �0(r, H),

allows the calculation of the explicit cylinder parameters of height, surface area,

RS surface area, RS perimeter and volume. This is accomplished by evaluating

the first two derivatives of �0(r) at r = 0. Without the assumption of an oval RS,

neither H nor the RS surface area can be uniquely determined.

1. Introduction

The present paper demonstrates that simple, explicit results

for specific cylinder parameters (see Fig. 1 for parameter

definitions) can be derived in terms of �ðrÞ. Using the corre-

lation function for the case of the single cylinder in the dilute

limit, �0ðrÞ, the quasi-dilute case is considered. The extension

from the dilute to quasi-dilute limit follows as a natural

consequence of the fact that the volume fraction, ’, and the

volume, V, for any single cylinder can be measured in terms of

�. The case of infinitely long cylinders (Gille, 2010), as well as

the transformations describing right cylinders of height H

(Ciccariello, 2002, 2010), have been previously investigated.

Here, an explicit estimation of H and other derived para-

meters is presented.

2. Theory

We wish to consider the scattering behavior of right homo-

geneous cylindrical particles of unique size with right section

(RS) embedded in a homogeneous sample matrix. However,

our results are general and also hold true for polygonal

RSs (i.e. pentagonal, hexagonal RSs). In the course of our

calculations, intermediate results show that it is useful to

assume the RS to be oval.1 The order range considered, L, is of

the order of magnitude of 100 nm. Assuming a quasi-diluted

cylinder ensemble of volume fraction ’ implies that the

minimum distance, r ¼ r0, between any two cylinders is

somewhat greater than the diameter of the largest cylinder,

L0.

The density autocorrelation function �ðrÞ ¼ �ðr; ’;LÞ of

the sample and the small-angle-scattering (SAS) pattern are

related by well known integral transformations (Glatter &

Kratky, 1982; Feigin & Svergun, 1987).

Using the definitions and assumptions presented in Fig. 1,

and restricting the r interval to 0 � r< r0 <H<L0 <1, the

generalized Abel transform is used to define the correlation

function CF of the cylinder �0ðrÞ,

�0ðrÞ ¼
1

r

Zr

0

x

ðr2 � x2Þ
1=2
�

x

H

� �
�0ðxÞ dx;

0 � r< r0 <H<L0 <1; ð1Þ

where �0ðrÞ is the CF of the RS. Equation (1) holds true for

any RS shape [see the non-convex butterfly example

(Ciccariello, 2009)]. We note that the system of inequalities

used to restrict r in equation (1) is valid through to equation

(7), and the normalization condition of the density auto-

correlation function �0ð0Þ ¼ 1 is satisfied. The information

contained near the origin (r! 0þ behavior) of equation (1)

will now be considered in the light of previous results (Gille,

2002a; Sukiasian & Gille, 2007).

The parametric integral is split into two parts, separating

out the contributions from an infinitely long cylinder and a

cylinder with finite height, H. The correlation function is given

by

�0ðrÞ ¼ �1ðrÞ �
1

rH

Zr

0

x�0ðxÞ dx; ð2Þ

where �1ðrÞ is the CF of the infinitely long cylinder (H !1,

RS = constant) and the second term of equation (2) reflects

1 Furthermore, the assumption of an oval RS automatically restricts our
consideration to convex particles.



the influence of finite H. The coefficients of the Taylor series

expansion of equation (2) lead to the cylinder parameters

introduced in Fig. 1. Evaluation of the first term at r ¼ 0

leads to the specific properties � 01ð0Þ ¼ ½�S1=ð4V1Þ� =

�u=ð4SRSÞ ¼ �1=l11 and � 001ðrÞ ¼ 3r=ð4l11
3
Þ þ 5r3=ð16l11

5
Þ

þ . . ., where l11 denotes the mean chord length of the infi-

nitely long cylinder and u denotes the perimeter of the RS.

The derivations of these results have been outlined in detail

(Gille, 2002b, 2010).

We note for future use that �00ð0Þ and � 01ð0Þ are interrelated

by �00ð0Þ=�
0
1ð0Þ ¼ 4=�. Setting � 001ð0þÞ ¼ 0, differentiation of

equation (2) with respect to r yields

� 00ðrÞ ¼ �
0
1ðrÞ �

1

H
�0ðrÞ �

R r

0 x�0ðxÞ dx

r2

� �
: ð3Þ

Consequently,

� 00ð0Þ ¼ �
0
1ð0Þ �

1

2H
¼ �

u

4SRS

þ
1

2H

� �
; ð4Þ

where � 00ð0Þ is expressed in terms of three cylinder parameters:

u, SRS and H.

The second derivative of the CF with respect to r, � 000 ðrÞ, is

� 000 ðrÞ ¼ �
00
1ðrÞ �

1

H
�00ðrÞ �

�0ðrÞ

r
�

2
R r

0 x�0ðxÞ dx

r3

� �� �
; ð5Þ

and as � 000 ðr! 0þÞ we obtain

� 000 ð0Þ ¼ �
00
1ð0Þ �

2�00ð0Þ

3H
¼ � 001ð0Þ �

2 ð4=�Þ� 01ð0Þ
� 	

3H
: ð6Þ

Using equations (4) and (6), � 000 ð0Þ can be written

� 000 ð0Þ ¼ �
8

3�H
�0
0ð0Þ þ

1

2H

� �
¼

8

3�H

1

l1

�
1

2H

� �
: ð7Þ

Generally, equation (7) defines two different H values in terms

of � 00ð0Þ and � 000 ð0Þ. These solutions H1;2, 0<H1 � H2 <1, are

H1;2 ¼ �
1

T�0
0ð0Þ

1� ð1� TÞ
1=2

� 	
;

with T ¼
3�� 000 ð0Þ

4 � 00ð0Þ
� 	2

¼
3�

4
�ð0Þ: ð8Þ

The T term involved in equation (8) is related to the so-called

puzzle-fitting function �ðrÞ ¼ � 000 ðrÞ=½�
0
0ðrÞ�

2 as discussed by

Gille (2009), where a numerical analysis of T terms is inves-

tigated in connection with the limit �ð0þÞ.

2.1. Plate-like and rod-like cylinders

The single limiting solution, H ¼ l1, exists if and only if

T ! 1 (see Fig. 2, left-hand side). We emphasize that � signs

before the root term in equation (8) have practical conse-

quences. That is, for the ð�Þ sign we have plate-like cylinders

of height H, l1=2<H1 < l1, while for the ðþÞ sign, we have rod-

like cylinders, l1 <H2 <1 (see Fig. 3 for an analysis of the

term w ¼ H=l1). As �0ðL0Þ ¼ 0 unambiguously defines the

maximum particle diameter L0, when H1 6¼ H2 two different

maximum RS diameters result, LRS1
6¼ LRS2

. This is discussed

first without making the assumption of an oval RS. In x2.1.3,

the RS is restricted to the oval case and our findings are

revisited. We demonstrate that a restriction to the oval RS

case clarifies our final results.

2.1.1. Plate-like cylinders. This is the case in which

H ¼ H1 ! 0, and it includes the familiar lamellar shape. The

forms of the first and second derivative of the CF are

� 00ð0Þ ’ �1=ð2HÞ ¼ 1=l1 and � 000 ð0Þ ! 0, respectively. The T-

term behavior as T ! 0 reduces equation (8) to an inde-

terminate form ½0=0�,

lim
T!0

HðTÞ ¼ l1 lim
T!0

1� ð1� TÞ
1=2

T
¼

l1

2
:

Consequently, H1 ! 1=ð2j� 00ð0ÞjÞ, giving l1=2 � H1 � l1.

2.1.2. Rod-like cylinders. In the limiting case H ¼

H2 !1, then �0ðrÞ ! 1� r=H2, 0 � r � H2, and the mean

chord length l1 approximately agrees with H, l1 ’ H. At r ’ l1

there is a dominant peak in the chord-length distribution

density (CLDD), AðrÞ ¼ l1�
00
0 ðrÞ, for rod-like cylinders. The

larger the value of H2, the more the CLDD approaches

Aðr;H2Þ ! �ðr�H2Þ, where it collapses. This is verified by

examining equation (8) and noting that as � 00ð0Þ ! 0 and

T ! 0,

HðTÞ ¼ l1 lim
T!0;H!1

1þ ð1� TÞ1=2

T
¼ 1:

The positive sign in front of the root term is the only differ-

ence between this result and that of the plate-like cylinder

case.

The equations for fixing cylinder parameters using �0 in

the infinitely dilute limit are summarized in Table 1.

Table 2 summarizes the quasi-diluted case, where the func-

tions �ðrÞ and �0ðrÞ are connected by the relation

�ðrÞ ¼ ½�0ðrÞ � ’�=ð1� ’Þ (Guinier & Fournét, 1955; Gille,

2002b). As �0ðL0Þ ¼ 0, the value �ðL0Þ ¼ �’=ð1� ’Þ defines

the first local minimum of �ðrÞ [Table 2, item (5)]. Of particular
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Figure 1
Cylindrical particles with oval right section X: The model comprises the
limiting cases lamella and rod. A quasi-diluted, r0 <L0, ensemble of
homogeneous cylinders of order range L is assumed. The length r0

denotes the shortest distance between any two points, belonging to two
different cylinders. The intention is to establish explicit relations that
define a first parameter set of six independent geometric quantities:
height H, volume V, volume fraction ’, surface area S, right section
surface area SRS and the perimeter u of the RS, in terms of the SAS
correlation function �ðr;LÞ. Other parameters of the model (for example
the mean chord length of the RS X, x1 ¼ �SRS=u, or the mean chord
length l1 of the cylinder) depend on the first parameter set.



importance is the relation between the characteristic volume,

vc, and �ðrÞ, vc ¼
R L

0 4�r2�ðrÞ dr ¼ V=ð1� ’Þ (Gille, 2002b).

This relation enables the determination of the cylinder volume

V, item (4) of Table 2.

2.1.3. Assumption of oval cylinders and identification of H.

The results summarized in Tables 1 and 2 hold true for right

cylinders with any RS. However, this generality has a marked

disadvantage. The cylinder height, surface area and maximum

diameter of the RS cannot be uniquely determined. Conse-

quently, the mean chord length x1 of the RS cannot be

uniquely determined [note the remark ‘two solutions’ in Table

1 items (4) and (6), and Table 2, item (7)]. Simply stated, there

is not enough of the information necessary to fix these para-

meters. However, making the assumption that the cylinder has

an oval RS simplifies the situation. This is demonstrated using

the largest diameter of the RS region LRS and its mean chord

length, x1. Using the results outlined above, the lengths H and

the three parameters LRS, x1 and SRS can be found from L, V,

� 00ð0Þ and � 000 ð0þÞ.
If the geometric limiting conditions typical of an oval RS,

SRS � �LRS
2=4 and x1 � �LRS=4, are combined, a unique

solution results. Taking LRS1;2
¼ ðL2

0 �H2
1;2Þ

1=2 and summar-

izing the latter inequalities results in a restricted interval for

the mean chord length x1,

SRS=LRS � x1 � �LRS=4: ð9Þ

Equation (9) simplifies the constellation discussed in the

previous sections and fixes one solution of H from H1;2. In the

infinitely dilute case, equation (9) can be written in terms of

LRS, V, � 000 ð0þÞ and H using the right-hand side of equation (7)

as

4V

�LRS

�
8

3�

1

� 000 ð0Þ
� LRSH: ð10Þ

The case H1 � H2 is possible, and is illustrated for the first

circular cylinder case H = 2, D = 4 in Fig. 2. For rods

� 000 ð0þÞ ! 0 and H !1, V !1, see Gille (2010). For a

fixed L, the function �0 can be found from � as described in

Table 2, item (5). Thus, equation (10) can be analogously

applied to the quasi-diluted case. In summary, owing to the

terms � 00ð0Þ and � 000 ð0Þ, the problem of estimating the char-
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Figure 3
Analysis of w ¼ H=l1 ¼ ½1� ð1� TÞ1=2

�=T, 0 � T � 1. In both the �
cases as T ! 1, H ¼ l1 results. For each T in the interval 0 � T � 1, the
w term is always greater than 1/2. If T < 1, two different H exist. The
positive sign leads to rod-like cylinders. The negative sign leads to plate-
like cylinders, i.e. as T ! 0, H=l1 ! 0 or H=l1 !1.

Figure 2
The function Aðr;H;DÞ of circular cylinders [for the second peak (larger r), � 000 ðrÞ � Aðr! D;H;DÞ ! 1, i.e. a pole at r = D, see Ciccariello (1990)].
The first peak (smaller r) is limited, it is a finite jump. The function Aðr;H;DÞ is not linear in the first interval of representation, 0 � r � minðH;DÞ.
Cylinder 1: Height H = 2 and diameter D = 4, � 00ð0Þ ¼ �1=2, � 000 ð0Þ ¼ 1=ð3�Þ. In this case, A(0) = 0.212. The largest particle diameter is L0 ¼ 2ð5Þ1=2 and
V ¼ 8�. Additionally, the parameter l1 ¼ 2 results. Inserting these parameters into equation (8) gives H1 ¼ H2 ¼ H ¼ 2 [equation (9) involves one
solution, as T = 1, see Fig. 3]. Cylinder 2: In this case, H = 3, D = 4. Measuring this using equation (8) requires more effort, as T< 1. Here, the largest
particle diameter is L0 ¼ 5 and V ¼ 12�. The values � 00ð0Þ ¼ �5=12 (l1 ¼ 12=5), � 000 ð0Þ ¼ 0:0707 and T = 0.96 give two different heights, H1 ¼ 2 and
H2 ¼ 3; using equation (7). If an oval RS is assumed and the inequalities in equation (9) are applied, the maximum RS diameter is LRS1;2

¼ ðL2
0 �H2

1;2Þ
1=2

and the correct solution H ¼ H2 is found. Equation (9) is fulfilled for H ¼ H2 but not for H ¼ H1. In the latter case, the contradiction 12: < 9: follows
from equation (10).



acteristic parameters of right oval cylinders using the SAS CF

can, unexpectedly, be handled quite simply. An application of

the relations in Tables 1 and 2 is presented in Fig. 2.

2.2. Aspects of data evaluation

Specialized data-evaluation techniques exist for measuring

the parameters � 0ð0Þ and � 00ð0Þ from the smeared intensity

(Ciccariello & Sobry, 1999). On the other hand, for a well

selected order range L, the function �ðr;LÞ can still be

calculated by using familiar SAS transforms. Care must be

taken when working with these transforms due to potential,

well documented, truncation errors (Glatter & Kratky, 1982;

Feigin & Svergun, 1987; Burger & Ruland, 2001; Hansen,

2003; Gille, 2003). There are many differentiation techniques

[cf. the approach described by Lanczos (see Groetsch, 1998)]

that define � 0ðr;LÞ in terms of �ðr;LÞ. Numerical estimations

for the term � 00ð0Þ have been calculated successfully here

using the Mathematica (Wolfram Research, 2009) function

SequenceLimit. Details of the procedure are discussed in

reference to the puzzle-fitting function �ðrÞ of randomly

shaped puzzle fragments in the punch-matrix/particle puzzle

case (Gille, 2009).

3. Summary and conclusions

An extensive geometric parameter set (see Tables 1 and 2)

describing ensembles of cylinders based on their SAS CF, with

practical applications for the evaluation of

scattering data, has been discussed. The explicit

solutions can be traced back to the terms � 0ð0Þ
and � 00ð0þÞ of the sample CF. Even if H1 6¼ H2,

there exists only one solution for the para-

meters L0, V, ’, S, l1 and u. The unique solution

for these parameters is independent of whether

H ¼ H1 ! 0 or H ¼ H2 !1. By assuming

an oval RS and restricting it to the set of

inequalities in equations (9)–(10), even SRS and

x1 can be uniquely determined.

For the more general case of a non-oval RS,

it was demonstrated that two different para-

meter sets for the RS surface area and its

mean chord length result. The smaller solution

for the length H1 corresponds to a relatively

flat cylinder for which l1=2 � H1 � l1, i.e.

H1 ’ l1 	 L0. The greater solution, H2, corre-

sponds to a more elongated (longer) cylinder,

l1 � H2 ’ L0.

The solutions H1;2 correspond to differently

shaped right sections X, X1 6¼ X2. Unfortu-

nately, this line of analysis suffers from the

disadvantage that it does not allow the unique

determination of the shape of X1 or X2 unless

further assumptions about the RS shape are

made. This fact is not surprising, as it agrees

with the well known finding of Mallows & Clark

(1970a,b)2 that two differently shaped convex

RSs X1;2 correspond to one CLDD. In our context this means

that without introducing further assumptions, actually the

condition of an oval RS, or adding further independent

experimental variables, the cylinder parameters cannot be

uniquely determined.
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Table 1
Parameters of a single cylinder in terms of �0ðr;L0Þ.

Parameter Symbol Formula

(1) Height H H1;2 ¼ �½1=T� 00ð0Þ�½1� ð1� TÞ1=2
�, T ¼ ð3�=4Þ�ð0Þ

(2) Volume V V ¼
R L0

0 4�r2�0ðrÞ dr

(3) Total surface area S S ¼ �4V� 00ð0Þ

(4) RS surface area SRS SRS1;2
¼ V=H1;2 (two solutions)

(5) RS perimeter u u ¼ ðS� 2SRS1;2
Þ=H1;2 (one solution)

(6) RS chord length x1 x1 ¼ �SRS1;2
=u (two solutions)

Table 2
Recognition of cylinder parameters from the sample CF �(r) in the isotropic, quasi-diluted
case.

All parameters are traced back to �ðr;LÞ.

Parameter Symbol Formula

(1) Characteristic volume vc vc ¼
R1;L

0 4�r2�ðrÞ dr

(2) Mean chord length l1 l1 ¼
R L0

0 ½r�
00ðrÞ=j� 0ð0Þj� dr

(3) Volume fraction ’ 1� ’ ¼ 1=l1j�
0ð0Þj ¼ 1=

R L0

0 r� 00ðrÞ dr

(4) Cylinder volume V V ¼ ð1� ’Þvc ¼
R1

0 4�r2�ðrÞ dr=
R L0

0 r� 00ðrÞ dr

(5) Single cylinder CF �0 �0ðrÞ ¼ ð1� ’Þ�ðrÞ þ ’, � 00ðrÞ ¼ ð1� ’Þ�
0ðrÞ

(6) Height H H1;2 ¼ �½1=T� 00ð0Þ�½1� ð1� TÞ1=2
�, T ¼ 3��ð0Þ=4

(7) RS surface area SRS1;2
SRS1;2

¼ V=H1;2 (two solutions)

(8) Total surface area S S ¼ 4V=l1 ¼ 4vcð1� ’Þ
2
j� 0ð0Þj ¼ 4vclp=l1

2

(9) RS perimeter u u ¼ 3�V� 000 ð0Þ=2 (one solution)

2 These authors have demonstrated two non-congruent 12-sided polygons with
the same chord-length distribution.
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